Astăzi, vom pătrunde în lumea fascinantă a lui Ecuație polinomială. Din timpuri imemoriale, Ecuație polinomială a fost o sursă de intrigi, entuziasm și dezbateri. Fie că este vorba de impactul său asupra societății, de relevanța sa în istorie sau de influența sa asupra lumii moderne, Ecuație polinomială a ocupat întotdeauna un loc proeminent în mintea și inimile oamenilor. În acest articol, vom explora în detaliu importanța și semnificația lui Ecuație polinomială, vom analiza impactul acestuia asupra diferitelor aspecte ale vieții de zi cu zi și vom cerceta motivele pentru care Ecuație polinomială continuă să genereze interes și pasiune astăzi. Așa că pregătește-te să te cufunzi într-o călătorie captivantă prin istoria, cultura și relevanța lui Ecuație polinomială în lumea de astăzi.
În matematică, o ecuație polinomială, sau ecuație algebrică, este o ecuație de forma unde P este o funcție polinomială de orice ordin iar x este necunoscuta. Ecuațiile polinomiale cu coeficienți complecși au un număr de soluții complexe egal cu gradul polinomului P. Aceste soluții sunt chiar rădăcinile polinomului P atașat ecuației polinomiale.
Întrucât toate polinoamele de o variabilă sunt echivalente cu un polinom de forma următoare:
aceasta poate fi considerată și forma generală a unei ecuații polinomiale:
Găsirea soluțiilor unei ecuații polinomiale a dus la noțiunea de grup, Evariste Galois sesizând că fiecărei ecuații îi corespunde un grup de substituții (permutări) ale rădăcinilor sale [1].
Ecuația de gradul întâi este un caz particular și cel mai simplu de ecuație polinomială, în care polinomul P este un polinom de gradul întâi. O astfel de ecuație poate fi scrisă generic:
Soluția ecuației este unică, cu condiția ca a, coeficientul necunoscutei, să fie nenul, fiind dată de fracția:
Ecuația de gradul al doilea este un caz particular de ecuație polinomială, în care polinomul P este un polinom de gradul al doilea. O astfel de ecuație poate fi scrisă generic:
Ecuația are 2 soluții complexe conjugate, dacă discriminantul (Δ = b2 - 4ac) este negativ, respectiv reale, dacă acesta este pozitiv sau nul, notate cu .
Ecuația de gradul al treilea este, ca și celelalte cazuri de mai sus, un caz particular de ecuație polinomială, în care polinomul P este un polinom de gradul al treilea. O astfel de ecuație poate fi scrisă generic:
Fiecare ecuație cubică (sau de gradul trei) cu coeficienți reali are cel puțin o soluție reală nepereche și alte două care formează o pereche. Acestea pot fi ambele reale sau ambele complexe. Astfel, în funcție de valoarea discriminantului ecuației (Δ), care este un număr rezultat ca o combinație ai celor patru coeficienți ai ecuației, pot exista trei cazuri distincte.
Următoarele trei cazuri sunt cele mai importante de urmărit:
Ecuația de gradul al patrulea, sau bipătrată, este, ca și celelalte cazuri de mai sus, un caz particular de ecuație polinomială, în care polinomul P este un polinom de gradul al patrulea. O astfel de ecuație poate fi scrisă generic:
pentru orice coeficient a nenul, pentru că atunci polinomul/funcția/ecuația de grad patru nu ar exista.
Charles Hermite a obținut o soluție pentru ecuația de gradul cinci cu funcție eliptică.